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1. Introduction

Solution of the six-degree--of-freedom flight equations for aircraft

and missiles continues to represent one of the most important applica-

tion areas for analog, hybrid, and digital computer systems. Important

computer requirements such as accuracy and speed are dependent very

muchl on the choice of axis system for the translation equations of motion.

In this connection it is well known that the flight-path axis system

makes much lower accuracy and speed demands on the computer than

does the body-axis system [1, 2]. Despite this a number of current

computer mechanizations continue to use body axes for solving the trans-

lational equations of motion. Because of this, unnecessary demands of

accuracy or frequency response are placed on the computer and many

mechanizations which could be all analog or all digital have shifted to

hybrid implementation. Even :if the mechanization is hybrid from the

outset, there is considerable advantage to be gained by using an efficient

axis system. The purpose of this paper is to point out again the ad-

vantages of flight path axes and to summarize the overall equation

requirements for solving the six-degree of freedom flight equations.



2. Body-Axis Translational Equations

For comparison purposes we present first the body-axis transla-

tional equations. The body axes xb, y , and zb are defined as a right-

hand set fixed to the vehicle with the xb axis along the longitudinal axis

and the zb axis directed downward for normal level flight. The com-

ponents of the total vehicle velocity vector Vp along the xb, yb and zb

axes, respectively, are Ub, Vb and Wb (see Fig. 2. 1). The components

of the body-axis angular velocity vector 62 (and hence the vehicle angular

velocity vector) along the xb, Yb, and znb axes are Pb' Qb and Rb, i. e.,

roll rate, pitch rate, and yaw rate, respectively. Here we assume

Vp and 02 represent vehicle translational and rotational velocity vectors

as viewed from an inertial (non-accelerating) frame of reference. If

we denote the external forces along a set of coordinate axes by X, Y,

and Z, respectively, then Eulers translational equations of motion, ob-

tained by summing forces along the coordinate axes, are the following:

m (U -VR +WQ)=X (2.1)

m(V - WP + UR)= Y (2.2)

m(W - UQ + VP) = Z (2.3)

where m is the mass of the vehicle. The inefficiency of these equations

in body axes is immediately apparent when one considers the approximate

size of the various terms. Let the vehicle be, say, a Mach 2 aircraft

with Vma x = 2000 ft/ sec. A reasonable upper limit on pitch-rate Qb
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Figure 2. 1 Body Axes xb, Yb, zb with Velocity Components
Ub, Vb, and Wb and Angular Velocity Components

Pb' Q' and Rb Respectively.
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might be 2 radians/sec. Thus, the term UbQb in Eq. (2. 3) might

be as large as 4000 ft/sec2 cr 125 g's ! On the other hand Zb/m,

the normal acceleration due to the external force (primarily gravity

and aerodynamic lift) may have an upper limit of several g's. Hence

artificial accelerations which are perhaps 20 to 50 times greater than

the actual accelerations are introduced because of the high rotation

rates which the body-axes experience. This means much less favorable

computer scaling and hence much poorer solution accuracy for a given

computer precision. Furthermore, the high-speed dynamics of the

rotational equations are coupled into the translational equationsthus

placing severe dynamic response requirements on the computer. The

use of flight-path axes greatly alleviates these problems. As we shall

see in the next section, the flight path axes allow a more efficient

calculation of the aerodynamic angle of attack a and the aerodynamic

angle of sideslip P than body axes allow. Using body axes, and assuming

that the ambient air mass is not moving relative to the inertial frame

used to define Vp , then the following formulas can be used to obtain a,

0, and velocity magnitude Vp from the body-axis velocity components

U.b Vb, and W.

W

tan a = (2.4)Ub
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sn Vb (2.5)

p

Ub  (2 2 21/2 (2.6)

p cos c cos (U b -W b

3. Flight-Path Axis Translational Equations

Next consider the flight-path axes x , yw, z shown in Fig. 3. 1.

These differ from the body axes xb, yb Zb by the angle of attack a and

the angle of sideslip /3, as shown in the figure. To rotate from body

axes to flight-path axes one f:irst pitches the body axes about Yb through

- a. This defines an intermediate axis system xs y , zs called

stability axes. One then yaws about zs, through /3, which defines the

flight-path axes x w , y , and z . Note that V is the x component of

vehicle velocity; the yw and 2; components are zero by definition.

Let us define the x w , y , and z components of flight-path angular

velocity relative to inertial space by P Qw, and R , and the com-

ponents of external force along xw , Yv, and z by Xw , Yw , and Zw ,

respectively. Then, since U. V and V = W 0, the translational
w p w w

equations (2.1), (2.2) and (2.3) referred to the flight-path axes become

mV =X (3.1)
p w

mV R = Y (3.2)
pw w

.. mVp Q = Z (3.3)



Solution of these three equations results in total velocity Vp, flight-

path axis yaw rate Rw, and flight-path axis pitch rate Qw.

Next consider the formulas for a and P. Reference to Fig. 3. 1

shows that a is directed along ys with a component a cos 0 along yw

Thus a cos f is equal to the difference between body-axis and flight-path

axis angular rates along y . Therefore, from Eq. (3.3) we can write

Z

a c oQb Cos 0 - Pb sin + --- (3.4)
p

S
where Pb is the body-axis (not stability axis) angular rate along x s

and is given by

s
Pb P cos a + Rb sin a (3.5)

Similarly, reference to Fig. 3. 1 shows that is directed along z
w

and is equal to the difference between flight-path axis and body axis

angular rates along z . Thus from Eq. (3. 2)

Y
= -Rb s  

(3.6)
p

where Rb is the body-axis angular rate along z and is given byb s

RbS - P. sin a + Rb cos a (3.7)

(Note that
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Figure 3. 1 Flight Path Axes xw, yw' zw and the
Relation to Body Axes Xb, Yb' Zb
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SsQb (3.8)

since the yb body axis and v stabilityaxes are coincident.)

Equations (3. 1), (3. 4) and (3.5) can be integrated to yield total

velocity Vp, angle of attack a, and angle of sideslip /. They do not

present the scaling difficulty of Eqs. (2. 1), (2. 2), and (2.3) in the body

axes. The body-axis velocity components Ub , Vb , and W b can be ob-

tained from Vp, a, and / by the formulas

U b:: V cos a cos / (3.9)
b p

Vib - V sin . (3. 10)

W b := V sin a cos P (3.11)

Similarly, the flight-path-axis forces Xw, Y , and Zw can be derived

from body-axis force components Xb , Yb, and Zb by the formulas

X s = X b cos a + Zb sin a , Xw =X COs + Y sin f (3.12)

Y =Y , Y = -Xs sinf + Ys cos P (3. 13)
s b w s s

Zs = - Xb sin a + Zb cos a , Zw = Zs (3.14)

where X , Y , and Zs are the intermediate stability-axis force com-

ponents, Frequently the aerodynamic force components are computed

along stability axes, in which case the power plant and gravity forces,

computed in body axes, would be resolved into stability axes where the

8



aerodynamic forces are added; then the total forces would be resolved

into flight-path axes to allow use of Eqs. (3. 1), (3. 4), and (3. 5). It

should be noted that we have assumed throughout this section that the

translational and rotational velocity vectors are velocities relative to an

inertial reference frame. If the atmosphere through which the vehicle is

flying cap be considered to be fixed with respect to this inertial frame,

then the velocity magnitude Vp is the vehicle velocity relative to the

atmosphere, and a and f represent the aerodynamic angle of attack and

sideslip, respectively. Using the approximation that the earth is flat,

and with constant surface winds, it is possible to define the inertial

reference frame as a frame attached to the atmosphere. Then all the

formulas, as presented, are correct and a, and V can be used for
p

computation of aerodynamic forces and moments. Unfortunately, for a

rotating spherical earth axes fixed in the atmosphere are not inertial.

If we consider such a frame to be inertial, we will make acceleration

A2 A
errors in Eqs, (3. 1), (3.2) al.d (3. 3) of the order of V /ro where V is

the vehicle velocity relative to an inertial frame with origin at the center

of the earth and r is the radius of the earth. For illustration, consider

a vehicle flying eastward in still air with a velocity V relative to the

A
atmosphere. Then V ! V a + r wN cos L, where wN is the earth spin

rate and L is the latitude. If the vehicle is flying westward,

A A
V " V - r w cos L. For other headings V lies between these values.
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For example, if V = 3000 ft/sec and L = 0 degrees, V ranges between

approximately 1600 and 4400 ft/sec. The corresponding acceleration

error in Eqs. (3. 1), (3.2) and (3.3), given by V /r o , ranges between

2
approximately 0. 1 and 1 ft/ sec . For many flight vehicles this is a

negligible error. On the other hand for a supersonic transport cruising

eastward at 3000 ft/sec this lowers the required steady-state lift by

about 3 per cent, which could lower the drag significantly and hence

make a noticeable difference in maximum range.

There appears to the authors to be no simple way to take these

accelerations into account and still use a flight-path axis system re-

ferenced to the atmosphere. One could add an approximate correction

acceleration in the vertical direction given by V /r to the translatory

forces in Eqs. (3. 1). (3. 2), and (3. 3). In fact, one could further sim-

plify the computation by adding the term only to Eq. (3.3) based on the

argument that most of the time a supersonic aircraft will be in near-

level flight at cruise, and that a moderate acceleration error during

transient conditions can be accepted.

In this case Eq. (3.3) becomes

- m (V - Z (3. 15)

Note that this equation will exhibit acceleration errors of the order of

V /ro for conditions far from level flight.
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Rotational Equations

The only reasonable axes to use for the rotational equations of

motiop are the body axes. If w.e let the external moment components

along xb , Yb and zb be L, M , and Nb, respectively, then summation

of mopnents about the three bcdy axes of a body symmetrical about the

Xb zb plane leads to the equations:

I P b r (Iyy - IZZ) Qb Rb - Ixz (ab + Pb Qb) = Lb (4.1)

Iyy Q - (I - Ixx) Rb Pb + (Pb - Rb2 ) = Mb (4.2)
yy b (zz xx b b xz b b (

Izz Rb - (Ix -yy) Pb b - Ixz (Pb Qb Rb) Nb (4.3)

Here Ix, yy, and Izz are the moments of inertia about xb, yb' and zb

respectively, and I is the product of inertia of the symmetrical body.

Note in Eqs. (4, 1), (4.2), and (4. 3) that the second term in each equation

represents a nonlinear inertial coupling term. For flight vehicles such

as large transport aircraft which do not generate relatively high angular

rates these terms often can be neglected. For many flight vehicles the

rol}rrate Pb has a maximum value which is considerably higher than

pitch-rate Qbor yaw-rate R. Hence the QbRb term in Eq. (4.1) often

can be neglected in comparison with the Rb Pb and Pb Qb terms in

Eqs. (4.2) and (4.3), respectively.

The third term in each of Eqs. (4. 1), (4. 2), and (4. 3) represents the

effect of the product of inertia Ixz. If the x, y, z body axes have been
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chosen to be almost coincident with the principle axes, this term may be

negligible in all three equations, since Ixz will be very small compared

with the principle moments of inertia. For relatively low angular rates

the nonlinear terms (Pb Qb Pb - Rb2 , and Qb Rb) usually can be neg-

lected and in any event Rb2 frequently can be neglected as small compared

with P 2 in Eq. (4,2).

5. Computation of Euler Angles for a Flat Earth

Solution of Eqs. (4. 1), (4. 2) and (4. 3) results in computation of the

body-ap;is angular velocity components Pb, Qb' and Rb . These must be

integrated a second time to obtain the orientation of the vehicle body

axes with respect to the desired references axes, typically Euler axes

which point North, East, and toward the center of the earth (Xe, Ye'

a nd ze in Fig. 5. 1). This orientation usually is expressed in terms of

the conventional aircraft Euler angles, i. e., heading-angle 1, pitch

angle 0, and bank angle a. These angles usually are computed from

Pb' Qb apd Rb by the following well-known equations:

= (Rb cos + Qb sin 0)/cos 0 (5.1)

= Qb cos - Rb sin ¢ (5. )

= Pb +  sin 0 (5. 3)

Note that, since Pb, Q, Rb are the body axis components of the

12
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vehicle angular velocity relative to an inertial reference system, there

is a small error introduced by the angular velocity of axes which point

North, East, and down relative to a spherical earth. This small error

can be corrected, if necessary, using Eqs. (7. 1)-(7. 3) in the next

section.

The well known singularity of the Euler angle system at 0 = ± 7/2

can be avoided, if necessary, by computing direction cosines or

quaternions [4] instead of Euler angles, or by introducing a fourth

angle [ 3] .

The use of quaternions rather than direction cosines should be

considered if a system free of singularities is needed, since there are

only four quaternions with a single redundancy as compared with nine

direction cosines with six redundancies.

6. Computation of Vehicle Position for a Flat Earth

Once the orientation of the flight vehicle with respect to the Euler

axes has been established, e. g., by means of the Euler angles, then

it is possible to compute the velocity north, Ue; the velocity east, Ve,

and the velocity downward, W , or its negative, the rate of climb h.

Direct integration then yields the vehicle position.

Determination of Ue Ve, We is complicated by the fact that the

vehicle velocity vector, V lies along the x wind axis and therefore must
p
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be resolved from wind to earth axes. Unfortunately, the complete

orientation of the wind axes is known only relative to body axes, hence

it is necessary to perform the resolution of V into earth axes by first
p

resolving it into body axes, then from body axes to earth axes. The

resolution of V from wind axes to body axes is accomplished by the
p

transformation given in Eqs. (3. 9), (3. 10), and (3. 11).

The resolution of vehicle velocity from body axes to earth axes can

be accomplished by using direction cosines. Thus let i, f2, and f3

be the projections of a unit vector along the x body axis onto the xe,

ye, and ze earth axes, respectively. Similarly, let mi, m2, and m3

be the projections of a unit vector along the y body axis onto the xe,

ye, and ze earth axes, respectively. In the same way let nl, n2' and

n3 be the projections of a unit vector the z body axis along the xe, Ye'

and ze earth axes, respectively. Then by definition

velocity north = Ue = 1 Ub + m 1 Vb + n l Wh (6.1)

velocity east = V e = f2 Ub + m2 Vb + n2 Wb (6.2)

velocity downward = We = -h = R3 Ub +m 3 Vb + n3 W b  (6.3)

It is easy to show that the direction cosines are related to Euler angles

by the following formulas:

15



1 = cos 0 cos 4

f2 = cos 0 sin 4 (6.4)

k3 = - sin 0

1 = - cos sin / + sin ( sin 0 cos 4

m2 = cos ( cos 4' + sin 0 sin 0 sin (6.5)

m 3 = sin cos 0

n 1 = sin sin + cos ( sin 0 cos

n2 = - sin q cosc + cos sin 0 sin 4 (6.6)

n3 = Cos 0 cos

(Equivalent formulas for direction cosines in terms of quaternions are

given in Ref. 4. ) An alternative mechanization of Eqs. (6. 1) through

(6. 6) avoids computation of the direction cosines by instead performing

successive resolution of the velocity components Ub , Vb, and Wb

through the angles - 0, - 8, and - 4. Consider the intermediate axis

system x', y', z' in Fig. 5.1. Clearly the velocity components U', V',

and W' along x, y', and z' are given by

U' = Ub ' V' = Vb cos 0 - Wb sin q , W' = Vb sin 0 +W b cos ¢ (6.7)

Defining U", V", and W" as the velocity components along the inter-

mediate axes x", y", and z", we have

16



U" =U' cos 8 +W' sin , V" = V ' , W" = - U' sin O +W' cos O (6.8)

Finally, from Fig. 4. 1 we see that

U =Ulcos V" sin, V = Usin + V"cos ,W = h=W" (6.9)

Successive application of Eqs. (6. 7), (6. 8), and (6. 9) for U, V, and

W to obtain Ue, V e , and We requires fewer mathematical operations

than using Eqs. (8. 1) through (8. 6). It therefore has computational

advantages using either an analog or digital mechanization. In com-

puting ground coordinates from Ue and Ve inEqs. (6. 1) and (6. 2), or

Eq. (6. 9), it is important to note that Ue and Ve represent airspeed com-

ponents north and east, respectively. To convert them to groundspeed

components the north component of wind, w x, must be subtracted from

Ue, and the east component of wind, w , must be subtracted from Ve,

respectively. Thus if s and s represent distance traveled north and
x y

east, respectively, then

= U - w (6.10)

= V - w (6.11)
y e y

Equations (6. 10) and (6. 11) are valid only for steady winds, since the

implicit assumption was made that axes stationary relative to the atmos-

phere are inertial. Equations (3. 1), (3. 2), and (3. 3) are referred to

inertial space and correction terms must be added if the reference axes

are not inertial.
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7. Computation of Vehicle Euler Angles and Position for a Rotating
Spherical Earth

In the previous section we presented the formulas for computing

vehicle position over a flat earth with steady winds. We can use the

same position formulas to obtain velocity north, Ue, and velocity east,

V over a rotating spherical earth with radius ro, angular rate wN .

However, U and V will represent airspeed components and must bee e

corrected to yield groundspeed components s and s respectively.x y

Furthermore, when a spherical earth is considered it may be necessary

to correct the vehicle angular rates used to compute Euler angles in

order to take into account the rotating reference frame, as pointed out

earlier in Section 6. It can be shown that the body axis components

of the vehicle angular velocity relative to the Euler reference frame,

Pbe' Qbe' Rbe are given by the following formulas [ 5]:

s s
P P Yf +-x 2  y + tan L 3  (7.1)be = Pb r 1 r 2 r 3

s Sx y
Qbe = + m2 + - tan L m3  (7.2)

s s s

R = Rb-Y n, + x n + Ytan Ln (7.3)be b r1 r 2  r 3

Here r is the radial distance of the vehicle from the center of the earth

and is given by
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r = r + h (7.4)

where r is the radius of the earth and h is the vehicle altitude. In0

many cases we can substitute ro for r in Eqs. (7. 1), (7.2), and (7. 3)

and still obtain sufficient accu:racy.

The values of Pbe' be' and Rbe in these equations are then used to

compute the Euler angle rates. Thus by analogy with Eqs. (5. 1), (5. 2),

and (5. 4)

= (Rbe cos b + Qbe sin )/cos 0 (7. 5)

= Qbe cos 0 -Rbe sin 0 (7.6)

= Pbe + P sin 0 (7.7)

In many cases the computations involved in Eqs. (7. 1), (7. 2), and (7. 3)

can be neglected, i. e., we can assume that Pbe Qbe Q b' Rbe Rb
be P e ' e"

This is particularly true if the overall six-degree-of-freedom computa-

tion involves a control system (automatic or human) which attempts to

maintain 1P, 8, and ¢ at specified values. In any case the correction

rates are the order of Vp/r . For example, if V = 2000 ft/sec, the

correction rate is equal to approximately 0. 005 degrees per second.

On the other hand, if the flight-vehicle problem includes a stable plat-

form, the rate corrections given by Eqs. (7. 1), (7. 2), and (7. 3) may be

important.
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It should be noted that s and s in Eqs. (7. 1), (7. 2), and (7. 3)
x y

represent vehicle velocity components north and east, respectively,

over the surface of a non-rotating earth with steady winds. On the other

hand Eqs. (6. 1) and (6. 2), or alternatively, Eqs. (6. 9), gives us U
e

and Ve, i. e., vehicle velocity components north and east, respectively,

relative to the inertial reference frame for the translational equations

of motion. We made the approximation in Section 3 that this reference

frame is fixed relative to the ambient atmosphere. We can account

for the linear velocity of the atmospheric reference frame (but not the

angular velocity) by noting that relative to the surface of a non-rotating

earth it is moving northward with the northerly component of wind and

eastward with the sum of the rate due to earth spin and that due to east-

ward component of wind. Thus we can write the following equations:

x = U - w (7.8)x e x

y =V e +w rcos L-Wy (7.9)

It can also be shown [ 5] that tlhe time rate of change of latitude and

longitude are given by the following formulas:

s x
r (7.10)

r cos L (7.11)

20



It should be noted that motion of a flight-vehicle over a rotating

earth can be treated exactly [ 5], but that the exact translational

equations referred to axes fixed relative to the ambient atmosphere,

are very complicated. Thus many of the computer mechanization ad-

vantages for flight-path axes are lost, and the computation of a, 93, and

Vp is much less elegant. We have attempted in this section to describe

how one can utilize the flight-path axis system and still correct approxi-

mately for the fact that the vehicle is flying over a rotating earth with

surface winds. This approach should be adequate for all but the most

exacting requirements unless the vehicle reaches hypersonic speeds.

For subsonic vehicles or supersonic vehicles traveling over relatively

short distances the flat-earth equations in Sections 3 through 6 should

be adequate.

8. Computation of Aerodynamic Forces and Moments

Aerodynamic forces and moments for flight vehicles normally are

computed in stability axes. Thus let Xa, Ya' and Z be the aerodynamica

forces along the xs, ys, and z stability axes shown in Fig. 3. 1. Here

- X a corresponds to drag D and - Za corresponds to lift L.

In addition to aerodynamic forces the flight vehicle experiences

propulsion and gravity forces. These are most conveniently defined

ini hIdy axes. Let us denote the propulsion force components along the

x and z body axes by X and Z , respectively. The gravity force
p p

21



components along x, y, and z will by definition be mgk 3 mgm 3, and

mgn 3 respectively. The sum of the propulsive forces and gravity forces

along body axes can then be resolved to stability axes, where the aero-

dynamic forces are added to obtain the total force component X s , Ys'

and Zs along the stability axes. Using (6. 4), (6. 5), and (6. 6) to express

the direction cosines 3,' m3' n3 in terms of Euler angles, we obtain:

X s = (Xp- mg sin 0) cos a + (Z + mg cos 8 cos 0) sin a -D (8.1)

Ys =mgcos sin + Ya (8.2)

Zs = (Xp - mg sin ) sin a + (Zp + mg cos cos ) cos a - L (8. 3)

Finally, reference to Fig. 3. 1 shows that the force components X , Yw'

and Z along the flight-path axes can be computed using the following
w

for mulas:

X =X cos +Y sin/~ (8.4)

Y = - sin + Y cos (8.5)

Z = Z (8.6)
W S3

These force components are used to mechanize the translational equations

given in Section 3. If the aerodynamic forces are given in body axes

rather than stability axes, the modification of Eqs. (8. 1), (8. 2), and (8. 3)

is apparent.
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The external moments acting on the flight vehicle consist of aero-

dynamic moments La, Ma, and Na normally given in stability axes,

and power plant moments L , Mp, and Np, given in body axes. The

total moments L, M, and N in body axes become the following:

L= L cos a - N sin a + L (8.7)a a p

M=M +M (8.8)
a p

N = L sin a + N cos a + N (8.9)a a p

Again, if the aerodynamic moments are given in body axes, the sim-

plification of Eqs. (8. 7), (8. 8), and (8. 9) is obvious (set a = 0).

Figure 8. 1 shows a block diagram of the over-all six-degree-of-

freedom equations for the case of a flat earth.
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P PS Ub
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S s Angular Rates Vb =V sin 0 Vb

R % = Qb R s AlongStability b  P

Rb RbS bsina + osa Axes Wb = Vp sin a cos WbJb b b

Euler
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b b c os U' in Ub U " = V' cos 0 + W' sin U' Sx = U" cos - V" sin - W x Distance North
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R = osOin Vb by Wh Aliu
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Figure 8. 1 Block Diagram of Combined Flight-Path Axis, Body-Axis System for a Flat Earth, Steady Winds.
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